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ABSTRACT 

How organisms gather and utilize information about their landscapes is central to understanding 

land-use patterns and population distributions.  When such information originates beyond an 

individual’s immediate vicinity, movement decisions require integrating information out to some 

perceptual range.  Such non-local information, whether obtained visually, acoustically, or via 

chemosensation, provides a field of stimuli that guides movement.  Classically, however, models 

have assumed movement based on purely local information (e.g., chemotaxis, step-selection 

functions). Here, we explore how foragers can exploit non-local information to improve their 

success in dynamic landscapes. Using a continuous time / continuous space model in which we 

vary both random (diffusive) movement and resource-following (advective) movement, we 

characterize the optimal perceptual ranges for foragers in dynamic landscapes. Non-local 

information can be highly beneficial, increasing the spatiotemporal concentration of foragers on 

their resources up to twofold compared to movement based on purely local information.  

However, non-local information is most useful when foragers possess both high advective 

movement (allowing them to react to transient resources) and low diffusive movement 

(preventing them from drifting away from resource peaks). Non-local information is particularly 

beneficial in landscapes with sharp (rather than gradual) patch edges and in landscapes with 

highly transient resources. 
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INTRODUCTION 

Foraging success provides a critical bridge between consumer behavior and population 

distributions.  At short timescales, the question of consumer-resource overlap falls within 

optimal foraging theory (OFT), which focuses on how movements impact forager success. OFT 

asks when individual foragers should abandon a focal patch to seek out resources elsewhere and 

how this decision affects overall distributions of foragers across the landscape (e.g., Charnov 

1976, Pyke 1984, Perry and Pianka 1997, Arditi and Dacorogna 1985, 1988; Bracis et al. 2015).  

At larger timescales, the role of individual decision-making is reduced relative to the impact of 

long term processes like population dynamics and evolution.  For this, OFT is less useful, and is 

often replaced by the theory of evolution of dispersal (TED).  TED focuses on population-level 

success, rather than individual success, with the primary questions framed in terms of game 

theory and evolutionarily stable strategies (Hastings 1983, Johnson and Gaines 1990, McPeek 

and Holt 1992, Cantrell et al. 2010, Averill et al., 2012).   Although OFT and TED differ in 

context, timescale, and currencies for contrasting movement strategies, the ideal free distribution 

and related ideas, such as conditional dispersal and density dependent habitat selection, are 

relevant in both theories, reflecting broad foundational processes and patterns (Morris 1988, 

Milinski 1994, Dreisig 1995).  

For both OFT and TED, models typically fall within one of three different mathematical 

formalisms: patch models (Hastings 1983, McPeek and Holt 1992, Cressman and Křivan 2006), 

integrodifference/integrodifferential equation models (IDEs) (Cosner et al 2012, Cantrell et al 

2012), and partial differential equation models (PDEs) (Hastings 1983, Arditi and Dacorogna 

1987, Cantrell et al 2008, 2010).  Patch models assume discrete resource regions, whereas IDEs 

and PDEs allow for continuous variation in resource abundance or quality.  A subtler distinction, 
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however, involves what the three formalisms assume about movement.  In patch models, 

movement is only tracked when it occurs between patches – i.e., when animals exit one patch 

and enter another.  Movement decisions are thus motivated by patch-level information, which 

often translates into omniscience about the landscape distribution (e.g., Fretwell and Lucas 1970, 

Pyke 1984, Pleasants 1989, Houston and McNamara 1999) or, at the very least, an understanding 

of the global conditions that could be obtained through sampling or learning (e.g., Charnov 1976; 

but see Cressman and Krivan 2006, Abrahams 1986, Tregenza 1995).  By contrast, in PDE 

models, animals typically follow a resource gradient, with movement deriving from purely local 

information from the foragers’ immediate (infinitesimal) vicinity (Okubo 1980, Cosner 2005, 

Cantrell et al. 2006, 2008). Finally, in IDE models, though movement is non-local (tailed 

dispersal kernels allow for rapid, long distance movement), the information used to motivate 

movement decisions is usually purely local or, on occasion, fully omniscient.    

In between full omniscience and purely local information lie only a few mathematical 

biology papers featuring information-limited consumers (e.g., Berec 2000) and movement based 

on non-local information, i.e., information derived from well beyond an animal’s current location 

(e.g., Hillen et al. 2007, Barnett and Moorcroft 2008, Martínez-Garcia et al. 2013, 2014).  

Models that specifically consider non-local gradient following are even rarer, appearing in only a 

handful of ecological scenarios, such as swarming dynamics of animal groups (Grünbaum and 

Okubo 1994; Mogilner & Edelstein-Keshet 1999) and stochastic models linking non-local 

resource detection, habitat preference, and consumer movement (Barnett and Moorcroft 2008, 

Moorcroft and Barnett 2008). In general, non-local gradient following should be particularly 

important in dynamic landscapes, where it should be especially beneficial to rapidly dispersing 

organisms that can reach distant resources before conditions change (Mueller & Fagan, 2008; 
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Mueller et al. 2011).  Although extensive research has explored information gathering and 

resource tracking in static landscapes (e.g., Viswanathan et al. 1999, Edwards et al. 2007, 

Vergassola et al. 2007, Bartumeus and Levin 2008, Hein and McKinley 2012), corresponding 

research in dynamic landscapes remains underdeveloped (but see Torney et al. 2011, Berdahl et 

al. 2013).   

Even though few theoretical studies analyze the impacts of non-local information on 

forager success, a large body of animal behavior research deals directly with this issue via 

species’ ‘perceptual ranges’ (e.g., Lima & Zollner, 1996, Holdo et al. 2009, Fletcher et al. 2013, 

Boonman et al. 2014). Perceptual range (i.e., the maximum distance at which landscape elements 

can be identified) impacts animal dispersal, search strategies, and landscape connectivity (e.g., 

Lima & Zollner 1996, Zollner & Lima, 1999, Gehring & Swihart 2003, Calabrese & Fagan 2004, 

Fletcher et al. 2013), while movement based on perceptual range can affect dispersal success and 

survival (Lima & Zollner, 1996, Zollner, 2000, Olden et al. 2004, Holdo et al. 2009, Prevedello 

et al. 2011). Indeed, research in landscape ecology, wildlife biology, and related fields that 

involve specific empirical landscapes often accounts for perceptual ranges using viewshed 

analysis—a function of Geographic Information Systems that represents the landscape area 

visually perceptible from a specific location given topographic barriers (e.g., Camp et al. 1997, 

Etzenhouser et al. 1998, Nassauer 1992).   

Perceptual ranges vary tremendously, including variation across species, within a species, 

and even within individuals (e.g., Zollner, 2000). Among species, perceptual ranges vary with 

both body size and mode of movement: Burrowing Owls (Athene cunicularia), for example, 

have perceptual ranges of approximately 1.5 km (Todd et al., 2007), whereas garden snails, 

Cornu aspersum, have a perceptual range of 20-40cm (Dahirel et al. 2015).  Within species, 
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perceptual ranges often vary depending on internal state (e.g., body size, landscape of origin, 

attention) (Downing, 1988; Mech & Zollner, 2002). For instance, speckled wood butterflies, 

Pararge aegeria, originating from fragmented landscapes have larger perceptual ranges and 

better habitat-finding ability than those originating from more continuous landscapes (Öckinger 

& van Dyck, 2012).  Finally, perceptual range within an individual can change depending on 

environmental conditions (e.g., vegetation density, illumination, cloud cover, land use) (Flaherty 

et al. 2008; Olden et al., 2004; Zollner & Lima, 1997).  For example, the neotropical marsupials, 

Philander frenatus and Didelphis aurita, have perceptual ranges of 100-200 m in mowed 

pastures and 30-50 m in planted land (Prevedello et al., 2011). Because perceptual ranges vary 

across and within species and individuals, selection may favor broader or narrower perceptual 

ranges depending upon the stability and predictability of landscape features. For example, longer 

perceptual ranges may be particularly useful in rough or dynamic landscapes because non-local 

information would offset difficulties arising from weak or transient gradients that would 

otherwise trap foragers in low-quality areas. 

Here, we investigate how perceptual range interacts with landscape dynamics to 

determine how well populations of mobile foragers can concentrate on food resources that are 

dynamic in space and time. Primarily, we seek to determine the types of dynamic resource 

landscapes that favor large versus small perceptual ranges. Furthermore, we want to understand 

the contributions that different types of movement (i.e., random diffusion versus oriented 

gradient-following) make to foraging success. Overall, our modeling approach is much closer to 

OFT frameworks than to TED frameworks because our approach considers only what is 

happening on the timescale of foraging and lacks resource depletion and population dynamics.  

Specifically, we construct a continuum model in which consumers move through a dynamic 
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landscape of transient patches according to local advection governed by intermediate-scale 

resource detection functions. Such detection functions fit in between the behavior of foragers that 

react to purely local gradients and the omniscience of classical optimal foragers.  

 

METHODS: 

We assume a one-dimensional landscape in which the spatiotemporal variation in 

resource abundance is defined by a density of resources 𝑚(𝑥, 𝑡) at location x and time t.  On this 

landscape, we consider a population of foragers that follows what they perceive as a resource 

gradient.  In many models of consumers tracking resource gradients, the gradient in question is a 

purely local (infinitesimal) one (e.g., Okubo 1980).  In contrast, here we base the foragers’ 

perception on the integration of resource abundance over a larger area.   

Specifically, we define a forager’s resource perception function ℎ(𝑥, 𝑡) as 

ℎ(𝑥, 𝑡) = ∫ 𝑚(𝑦, 𝑡)𝑔(𝑦 − 𝑥)𝑑𝑦
∞

−∞
     (1) 

where 𝑔(𝑦 − 𝑥) describes modifications in the forager’s perception with distance.    Because a 

forager’s ability to detect non-local resources depends on distance as well as habitat elements 

between the resources and the forager’s location, we explore imperfect, distance-dependent 

detection by adopting several different forms for 𝑔(𝑦 − 𝑥). We develop these functions more 

fully below, but briefly, we consider both finite perceptual ranges and a ‘decay with distance’ 

approach. Ranta et al. (2000) considered finite perceptual ranges in their individual-based models 

of non-omniscient foragers, and the ‘decay with distance’ approach is similar to that which 

Matsumura et al. (2010) used in their studies of foragers inhabiting two- and multi-patch 

landscapes. This latter approach captures the same types of complications field ecologists face 
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when they attempt to census organisms located some distance from a linear transect (e.g., 

Buckland et al. 2007).  To accommodate both types of distance-dependent detection, we 

mathematize the concept of an animal’s perceptual range in terms of the ‘detection scale’ of its 

perception function, detailed below.  At a practical level, Equation 1 implies that animals 

average information about the spatial distribution of their resources; this means that they will 

effectively lose information if the detection scale is too big. Thus, this kind of perception is 

functionally quite different than the detection of individual landmarks or prey items.  Lastly, note 

that differentiating ℎ(𝑥, 𝑡) with respect to x yields the non-local gradient in resources which 

foragers follow. Table 1 summarizes all mathematical functions and parameters, providing both 

mathematical definitions and biological interpretations, plus descriptions of what we mean by 

local versus non-local.  

Ignoring birth/death processes, we allow the movements of the foragers to include both a 

random (diffusive) component with diffusion coefficient D (units: length2 / time) and a directed 

(advective) component with advection coefficient α (units: length / time).  Consequently, the 

dynamics of a population 𝑢(𝑥, 𝑡) of foragers at density u at location x and time t following a 

perceived non-local gradient can be described by the advection-diffusion equation  

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
− 𝛼

𝜕

𝜕𝑥
(𝑢

𝜕ℎ(𝑥,𝑡)

𝜕𝑥
)  .   (2) 

We refer to Eq. 2 as an advection-diffusion process on non-local information, noting that, 

because of the integral in h(x,t), it is a partial integro-differential equation.  Notice, in Eq. 2, that 

while the extent of gradient following is based on non-local information (the integral 

component), movement itself is infinitesimal and thus completely local (the differential 

component).  This distinguishes our model from various IDE formulations that allow for non-
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local (i.e., jump) movement via dispersal kernels.  By enforcing local movement, we can focus 

on non-local information and the tradeoff between the availability of remote resources and the 

foragers’ ability to capitalize on this information using rapid, directed movement towards the 

distant resources. 

To quantify the effectiveness of consumer-resource tracking based on non-local 

information, we introduce a measure of foraging success (Ω). Ω parallels OFT’s ‘resource 

matching’ framework (e.g., Charnov 1976, Ranta et al. 1999, Matsumura et al. 2010).  However, 

because it does not consider mutual interference or depletion of resources by foragers, we have 

departed from a tenet of OFT. This is a reasonable assumption when population density is low 

(i.e., sparsely populated regions) and resources are ephemeral (i.e., resources degrade before 

their density can be reduced much by the foragers). In these systems, the question is more about 

capitalizing on transient resources, as opposed to avoiding competition.  Such resource dynamics 

characterize, for example, the Eastern steppes of Mongolia that have motivated much of our 

earlier work on animal movement (Mueller and Fagan 2008, Mueller et al. 2011, Martínez-

Garcia et al. 2013, Fleming et al. 2014). Ω is given by 

Ω = ∫ ∫ 𝑢
∞

−∞

𝑡𝑚𝑎𝑥

𝑡′ (𝑥, 𝑡)𝑚(𝑥, 𝑡)𝑑𝑥𝑑𝑡     (3) 

where the timeframe t’ to tmax represents some period after transient behaviors have settled 

down.  For static resource distributions, which (with appropriate boundary conditions of mass 

conservation) always exhibit an equilibrium solution u*(x), the integral is only over space.  For 

dynamic landscapes, such as periodically fluctuating landscapes (which are the focus of the 

remainder of our paper) or stochastically varying landscapes (where there is no single stable 

distribution) the time integral needs to be taken over a long enough period to discount the 

transient behaviors and instead capture long-term variation.  
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Example Resource Functions 

We consider both static and dynamic resource landscapes.  For static landscapes, we use 

numerical approaches to explore scenarios where resources occur as static Uniform or static 

Gaussian patches. We also obtain analytical results for the special case of infinite, spatially 

periodic landscapes where resource availability is driven by one or the sum of two sine curves 

(Appendix B). For dynamic landscapes, we consider two time-varying resource functions, a 

Pulsed Gaussian resource and a Pulsed Uniform resource. These resource functions create 

landscapes that feature either smoothly varying resource variation (Gaussian) or discrete patches 

with sharp edges (Uniform). The Pulsed Gaussian resource can be written: 

𝑚𝑔(𝑥, 𝑡) =
1

√2𝜋𝜎
exp (−

(𝑥−𝜇)2

2𝜎2
) sin2(𝜔 𝑡/2)    (4) 

where  and  are, respectively, the mean and standard deviation of the resource pulse and 𝜔 is 

the temporal frequency of the pulse.  

The Pulsed Uniform resource can be written: 

𝑚𝑠(𝑥, 𝑡) = sin
2(𝜔 𝑡/2) × {

1

2√3 𝜎
𝜇 − √3𝜎 ≤ 𝑥 ≤ 𝜇 + √3𝜎

0 𝑒𝑙𝑠𝑒

  (5) 

where the √3 term appears so that the standard deviation of the Pulsed Uniform function 

matches that of the Pulsed Gaussian.  This scale matching facilitates comparisons of results.  

Example Detection Functions 

We consider three detection functions (Top-hat, Gaussian, and Exponential) representing 

different assumptions about how a forager’s ability to detect available resources decays as a 

function of distance. Because we are interested in a transition from platykurtic (no tails) to 
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leptokurtic (fat tails) detection functions, we choose three detection functions that can all be 

obtained from the exponential power distribution (Smith and Bain 1975), but which differ in 

kurtosis. 

The Top-hat detection function, which is highly platykurtic, is: 

𝑔𝑢(𝑦, 𝑥, 𝑅) = {

1

2𝑅
−𝑅√3 ≤ 𝑥 − 𝑦 ≤ 𝑅√3

0 𝑒𝑙𝑠𝑒

     (6) 

where R is the standard deviation of the forager’s detection function, or ‘detection scale’.  

The Gaussian detection function is: 

𝑔𝑔(𝑦, 𝑥, 𝑅) =
1

𝑅√2𝜋
exp(−(𝑦 − 𝑥)2/2𝑅2) .   (7) 

The Exponential detection function, which is leptokurtic, is: 

𝑔𝑒(𝑦, 𝑥, 𝑅) =
1

2𝑅
exp(−∣ 𝑦 − 𝑥 ∣/𝑅)  .    (8) 

If the detection scale R is held constant across Eqs. (6-8), the Exponential detection function 

provides a forager with the most information about resources located far away from the forager’s 

current position while the Top-hat detection function provides the least long-distance 

information and, importantly, sets an absolute bound on how far away a forager can (or chooses 

to) gather information about resource availability. As with the resource function, these detection 

functions are parameterized in such a way that, for a given R, the mean perceptual range is the 

same for all three functional forms.  Appendix A presents and illustrates the exact forms of the 

non-local resource-following function (ℎ(𝑥)) and its derivative (𝑑ℎ 𝑑𝑥⁄ ) for each of six scenarios 

(two resource functions (Eqs. 4-5)  three detection functions (Eqs. 6-8)).  

Solutions 
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Mathematically explicit results are tractable for static resource distributions consisting of 

one or a sum of sine waves with a Top-hat detection function (see Appendix B). We do not 

consider these sinusoidal landscapes elsewhere. For dynamic resource distributions, we solve the 

advection-diffusion process (Eq. 2) numerically, with the goal of quantifying the effect of the 

detection length scale (R) plus the advection and diffusion constants (α and D) on foraging 

success (Ω).  Specifically, we consider the six scenarios outlined above (two resource functions 

(Eqs. 4-5)  three detection functions (Eqs. 6-8)), and explore 340 parametric cases for forager 

movement, advancing 𝑙𝑜𝑔10(𝛼) from 1 to 5 by 0.25 and D from 1 to 20 by 1.  These ranges span 

a wide variety of advection strengths and diffusion rates, and collectively expose a wide range of 

model behaviors. For each of the resulting 2040 cases (6 x 340), we calculate and evaluate the 

shape of Ω(𝑅) for 𝑅 ∈ [0,20] recording as Rmax the detection scale at which Ω(𝑅) attains a 

maximum and Ω𝑚𝑎𝑥   as the value of that peak. 

Throughout, we solve the initial value equations numerically using a dynamic run 

discretization on a landscape 𝑥 ∈ [0,100].  As a baseline, we run 𝑡 ∈ [0,100]  with 4 pulses, so 

𝜔 = 8𝜋 100⁄ . To minimize effects from numerical transients, we calculate the foraging success, 

Ω, over the last of the four pulses (i.e., 𝑡 ∈ [75,100]).  In subsequent analyses (Appendix SA), 

we explore the issue of ephemeral resources to examine how the duration and frequency of 

resource pulses (which together characterize the ‘intensity’ of resource availability) influence the 

utility of non-local information gathering. Still later (Appendix SB), we introduce a landscape 

with two (synchronized) Pulsed Uniform resource patches to further demonstrate the differential 

impact of the three detection functions on overall foraging success.  

We implement numerical solutions in the R programming environment (R Core Team, 

2015) using the ReacTran (Soetaert and Meysman, 2012) and deSolve (Soetaert et al. 2010) 
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packages which, in turn, implement the FORTRAN LSODE solver (Radhakrishnan and 

Hindmarsh, 1993).  

 

RESULTS: 

Analytical results for static resource distributions 

If the resource distribution m in Eq. (1) is constant in time, the perception function is also 

constant in time, and Eq. (2) reaches an equilibrium distribution u* of foragers over the 

landscape.  To find this equilibrium, we set 𝜕𝑢 𝜕𝑡⁄ = 0, reducing Eq. (2) to a second order 

homogeneous ordinary differential equation 

0 =
𝜕2𝑢

𝜕𝑥2
−

𝛼

𝐷
(
𝜕𝑢

𝜕𝑥

𝜕ℎ

𝜕𝑥
+ 𝑢

𝜕2ℎ

𝜕𝑥2
)     (10) 

Solving Eq. (9) gives 

𝑢∗ = 𝑐2𝑒
𝛼

𝐷
ℎ(𝑥)

       (11) 

where c2 is a normalization constant.  The foraging success is then given by  

Ω = 𝑐2 ∫𝑚(𝑥)𝑒
𝛼

𝐷
ℎ(𝑥) 𝑑𝑥      (12) 

where the integral is over the entire landscape or, in the case of an infinite periodic landscape, 

over a single wavelength of the repeating unit.  Appendix B provides analytical results for 

hypothetical infinite periodic resource landscapes with a Top-hat detection function. 

Biological Interpretation  

In static landscapes, the stable forager distribution (Fig. 1b,d,f,h) varies from being 

highly concentrated around the resource peak when minimal random movement accompanies 

steep gradient following behavior (i.e., a high α/D ratio) to being uniformly distributed when the 
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foragers only move randomly (i.e., α/D = 0).  When the resource is static, a non-zero detection 

scale spreads the final forager distribution away from the resource peak (Fig. 1, compare results 

for R =10 to R =0), and thus is detrimental; rather, the optimal solution is to follow the purely 

local (infinitesimal) resource gradient (for the Uniform distribution, this conclusion relies on 

having at least a small amount of random, exploratory motion, 𝐷 > 0).  Interestingly, while 

purely local information is best, some non-local information scales are worse than others, and 

this depends on the scale of resource distribution itself.  For example, in a spatially periodic 

landscape, it is better to use a detection scale equal to the scale of the resource period rather than 

a scale equal to 1 2⁄  or 3 2⁄  the length of the resource period (Appendix B).  

Numerical results for dynamic resource distributions 

Limiting cases R = 0 and R = ∞  

As benchmarks for our numerical analyses, we obtain results for the limiting cases R = 0 

(advection on a purely local gradient) and R =∞ (advection based on omniscient knowledge 

about the resource distribution) for the Pulsed Gaussian and Pulsed Uniform resource 

distributions.   For R = 0, the choice of the detection function is immaterial, and 

Ω (specified as Ω0) is a sigmoidal function of α (Fig. 2). This is as expected, because α 

measures the speed with which foragers climb the resource gradient. Overall, higher values of Ω 

occur in the Pulsed Gaussian landscape than in the Pulsed Uniform landscape, because it is easier 

for foragers to advect up the smooth gradient of the Gaussian landscape.  Interestingly, for both 

landscapes, plots of foraging success reveal a ‘cross-over effect’, which represents an interaction 

between advection and diffusion (Fig. 2).  Diffusion impedes foraging success when the 

advection rate is small, but enhances foraging success when it is large (Fig. 2).  At the other 
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extreme, as 𝑅 → ∞, the perceived resource distribution, h(x), is spatially uniform and its gradient 

is zero.  This yields a stable, spatially uniform distribution of foragers. 

Biological Interpretation of the Limiting Cases  

The ‘cross-over effect’ (Fig. 2) occurs because increased diffusion means more 

exploratory movement.  When advection is low, exploration weakens foragers’ ability to 

concentrate at resource rich locations.  However, once advection is high enough to compensate, 

larger diffusion affords the extra advantage of exploratory movement.  This, in turn, 

inadvertently directs a portion of the forager population toward regions where the spatial 

gradient is stronger, further facilitating advection. Consequently, concentration of foragers on the 

resource is higher when both advection and diffusion are high as compared to when only 

advection is high.  Not surprisingly, cross-overs occur at smaller values of R in the Pulsed 

Uniform landscape where gradients are harder to detect, making exploratory movement more 

important.  These results are a fundamental distinction between a dynamic resource landscape 

and a static one – in the latter, diffusion should only inhibit foraging success (Fig. 1b,d,f,h). 

An optimal detection scale for non-local information gathering  

In some dynamic landscapes, non-local information can distinctly improve foraging 

success (i.e., it can increase Ω𝑚𝑎𝑥 (Fig. 3)). This is particularly true for foragers that can advect 

quickly on the gradient of their non-local information.  For a given detection scale, R, foragers 

with a greater α concentrate more readily on their resources. In addition, both the optimal 

detection scale 𝑅𝑚𝑎𝑥 and the corresponding maximum foraging success Ω𝑚𝑎𝑥 increase with 

increasing advection rate α (Fig. 3). Note that the relationship between foraging success and 

detection scale is asymmetric around 𝑅𝑚𝑎𝑥, with too much non-local information being worse 

than not enough.  This is especially evident when advection is fast (Fig. 3). 



16  

However, across all scenarios considered, results are complex, with advection and 

diffusion jointly determining 𝑅𝑚𝑎𝑥 and Ω𝑚𝑎𝑥  (Fig. 4). As suggested above, 𝑅𝑚𝑎𝑥 increases as α 

increases because faster advection on the perceived resource gradient facilitates foragers’ 

movement to more remote resources before they disappear. In contrast, 𝑅𝑚𝑎𝑥  decreases as D 

increases because increased random movement dissipates foragers from their resources, 

weakening the beneficial effects of advection (and thus reducing the importance and usefulness 

of non-local information).  

Foragers concentrate more effectively on resources in Pulsed Gaussian landscapes 

(characterized by smooth gradients) than in Pulsed Uniform landscapes (where patches have 

sharp edges), and this mechanism affects both 𝑅𝑚𝑎𝑥 and  Ω𝑚𝑎𝑥.  These results hold even though 

the total amount of resource and the standard deviation of the resource are held constant among 

scenarios. For example, 𝑅𝑚𝑎𝑥 is smaller for the Pulsed Gaussian resource landscape than for the 

Pulsed Uniform resource landscape, and this is particularly pronounced for the Top-hat detection 

function (Fig. 4). The reason is that the Pulsed Gaussian landscape provides a smoother non-

local resource gradient for foragers to advect along.  Put differently, the sharp patch edges of the 

Pulsed Uniform landscape do not provide as much useful non-local information, impeding 

foragers from concentrating on resources.  

Similarly, switching from the Top-hat detection function to the more kurtotic Gaussian 

and Exponential detection functions enhances foraging success because the latter two functions 

provide substantially more information about remote resources (Fig. 4).  Having both high 

advection and high diffusion is especially beneficial for foragers with Top-hat detection.  This is 

because diffusion provides some ‘exploratory movement’, compensating for their lack of long-

distance information.  This is only true, however, when the advection rate is high enough to 
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offset the dissipative effects of diffusion.  The overall benefits of a kurtotic detection function are 

especially clear in landscapes featuring more than one patch (Appendix SD). 

For reference, array plots giving curves of Ω(𝑅) as functions of (α, D) for all six resource 

distribution  resource detection scenarios appear in Appendix SA. 𝑅𝑚𝑎𝑥 and  Ω𝑚𝑎𝑥 were 

extracted from each parametric case in these arrays and then used to construct the contour plots 

in Fig. 4.  Appendix SB provides additional commentary and figures characterizing how the 

optimal detection scale and total foraging success depend jointly on advection and diffusion. 

For what kinds of movement and detection does non-local information provide a benefit?  

Across all landscape types and detection functions considered, a pronounced threshold behavior 

is evident in foraging success (Ω𝑚𝑎𝑥 Ω0⁄ ) as a function of advection rate (Fig. 5). Specifically, a 

sufficiently high rate of gradient-following movement is necessary before non-local information 

provides any benefit. Moreover, increased diffusion pushes this threshold to higher values of α, 

thus with more random movement, stronger levels of advection are necessary to attain the same 

level of foraging success. Even small amounts of diffusion are sufficient to create non-monotone 

(humped shape) curves of relative foraging success as a function of advection rate; this is 

especially true for Pulsed Uniform landscapes (Fig. 5).  Put biologically, for a given level of 

exploratory movement, there is an optimum rate of non-local gradient following that provides the 

greatest foraging success. However, on either side of this optimum, too much advection is 

generally better than not enough.  

For what kinds of landscapes is non-local information most useful?  

We observe a strong difference in Ω𝑚𝑎𝑥 Ω0⁄  between the Pulsed Uniform and Pulsed 

Gaussian landscapes, with the Pulsed Uniform landscape providing greater opportunities for non-

local information to improve foraging success (Fig. 5).  This greater potential for improvement 
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hinges on the sharp patch edges in the Pulsed Uniform landscape. Sharp edges provide foragers 

with very limited local information about the resource distribution; however, non-local detection 

functions help to alleviate this limitation, allowing foragers to better track resources (Fig. 4).  

Advection on non-local information is also especially important in landscapes with 

highly transient resource patches. In particular, using a framework that combines measures of 

duration and frequency into a ‘pulse intensity’ metric (Appendix SC), we show that, all else 

being equal, the relative benefit of non-local information (summarized by Ω𝑚𝑎𝑥 Ω0⁄ ) as well as 

the optimal detection distance,  𝑅𝑚𝑎𝑥, are greater in more intense landscapes (i.e., landscapes 

with short-lived, high abundance resource).  However, overall foraging success in intense 

landscapes is lower than in less intense systems (i.e., landscapes with long-lived but low 

abundance resource). Not surprisingly, increasing rates of advection increases optimal detection 

distances, overall foraging success and the benefit of non-local information (𝑅𝑚𝑎𝑥, Ω𝑚𝑎𝑥, and 

Ω𝑚𝑎𝑥 Ω0⁄ ).  As before, though, a threshold-type dependence on advection rate exists, wherein no 

increase in optimal detection scale nor payoff from non-local information occurs unless the rate 

of advection is sufficiently strong (Fig. SC2). Interestingly, the advection rate at which non-local 

information becomes beneficial is smaller in more intense landscapes because even a little 

directed movement is beneficial when resources are very short-lived (Appendix SC).  

 

DISCUSSION 

We used a continuous space / continuous time movement model to investigate how the 

acquisition of non-local information about resource availability, coupled with local, directed 

movement based on that information, influences foraging success in a dynamic landscape.  Non-

local information, whether attained through an increased scale of detection or via a shift to more 
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kurtotic detection functions, was often highly beneficial, increasing foraging success up to 

twofold compared to movement using purely local cues (Fig. 5).  However, non-local 

information was only useful when foragers were sufficiently mobile to reach their transient 

resources before they disappeared. Non-local information was particularly beneficial in 

landscapes with sharp (rather than gradual) patch edges and when the rate of random movement 

was sufficiently low that foragers did not drift away from the transient resource patch. 

Broadly speaking, our findings with these continuum models parallel important results 

from OFT models.  This is surprising because the two modeling frameworks are quite different 

in their assumptions about landscapes, the way individuals move, and even what constitutes 

foraging success. The convergence of results across modeling frameworks is especially clear 

when we focus on the consequences of perceptual constraints. In patch-based models, perceptual 

constraints result in ‘under-matching’ such that more foragers occur in resource-poor patches 

than expected (Abrahams 1986, Tregenza 1995). Likewise, in our models, foragers lacking 

perceptual ranges often have lower overall foraging success.   Second, patch-based models also 

predict that limits on perceptual range are more detrimental in coarse-grained landscapes (Ranta 

et al. 1999, 2000, Matsumura et al. 2010). Similarly, in our continuum models, decreasing R 

decreases foraging success, and this effect is especially pronounced in coarse-grained landscapes 

where there are only modest non-local resource gradients for foragers to advect on.  Finally, in 

patch-based models, ‘blundering foragers’ (i.e., foragers which get lost easily from patches) 

obtain a good, though sub-optimal match to their resources when patch size is unknown (Adler 

and Kotar 1999). In our model, a similar benefit of wandering appears when increased diffusion 

increases Ω𝑚𝑎𝑥 (Fig. 3, 4). 
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 Beyond broad similarities with patch-based models, however, our continuum approach 

also offers additional insights. In particular, our framework highlights how different kinds of 

resource landscapes and resource detection functions interact to provide foragers with either 

beneficial or detrimental non-local information.  For example, a clear difference exists in 

maximum foraging success between the Pulsed Gaussian and Pulsed Uniform resource 

landscapes (Fig. 4).  Specifically, the smooth edge of the Pulsed Gaussian landscape facilitates 

consumer convergence on resources, independent of the detailed characteristics of forager 

behavior. In natural environments, habitat patches may be delimited by hard or soft edges 

(Stamps et al. 1987), and changes in habitat structure that soften patch edges facilitate movement 

(Ries et al. 2004). Over the long term, such differences in consumer convergence may be one 

reason why hard patch edges discourage species dispersal. 

Similarly, we observed a clear benefit to Gaussian and Exponential detection functions 

compared to the Top-hat function (Fig. 4) and, in more complex landscapes, a benefit to the 

Exponential function over the Gaussian (Fig. SD1).  Kurtotic detection functions facilitate 

foraging success because the tails of the functions provide tidbits of information about resource 

conditions at remote locations, which are essential when trying to navigate through landscapes 

where conditions change rapidly.  Such ‘tailed’ detection functions are especially advantageous 

when the foragers’ gradient climbing ability is strong relative to random movement (Fig. 4), with 

the Exponential detection function being particularly advantageous in landscapes with more than 

one patch (Fig. SD1).  

The utility of non-local information in dynamic landscapes 

 Another novel finding of our work is the importance of non-local information in highly 

dynamic resource landscapes (Fig. 5, Fig. SC2). Not surprisingly, landscapes featuring strongly 
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pulsatile resources hinder absolute foraging success. However, compared to purely local 

information, advecting on non-local information provides a much greater relative gain in 

foraging success as the pulsatile ‘intensity’ of landscapes increases. In general, non-local 

information appears most useful when it contradicts (or at least augments) local information, 

identifying the existence of a large-scale resource gradient that may not be detectable from 

purely local information. This can be seen for the Pulsed Uniform landscape where non-local 

information effectively creates a perceived smooth gradient where the true resource distribution 

has only a sharp edge (Fig. 5). There are clear analogies here to other fields, such as finding 

minima on complex surfaces, evolution on rugged fitness landscapes (where ‘jumps’ avoid 

entrapment in local minima: Kauffman and Levin 1987), and denoising of images (where non-

local sampling helps inform what the overall picture looks like: Buades et al. 2005). 

We found strong evidence for the existence of optimal detection scales far smaller than 

the full landscape (Fig. 3, 4).  Information overload entails real costs in foraging success, even 

before considering energetic costs (Delgado et al. 2014). Indeed, when foragers have the wrong 

detection scale for their landscape, they are better off having insufficient spatial information than 

too much (Fig. 3, Fig. SD1). This is especially true for highly mobile foragers that are able to 

track resource gradients quickly. In an evolutionary context, such asymmetries would entail 

differential penalties for being wrong in different ways. In this case, selective pressures to greatly 

enhance perceptual range would be countered by other factors in all but the most ephemeral of 

landscapes. 

Optimal detection scales exist in our model because global knowledge (𝑅 → 𝑥𝑚𝑎𝑥) is 

functionally different than the kinds of omniscience traditionally assumed in OFT (Fretwell and 

Lucas 1970; Charnov 1976). Our integral approach to perceptual range (Eq. 1) builds in an 
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averaging process that incurs a loss of information relative to moving based on the location of 

the strongest resource peak. Averaging is detrimental any time detection scales exceed the 

inherent scale of resource distribution across the landscape.  This is because it flattens the 

perceived resource gradient and removes movement cues. In landscapes with multiple resource 

peaks, this manifests as a kind of ‘spatial confusion’ in which individuals are simultaneously 

pulled by the gradients of different peaks (see Fig F1). Because large detection scales are not 

always optimal (Figs. 3, 4, D1, F1), even in the static landscapes (Appendix B), the optimal 

solution is to select detection scales that minimize information loss due to spatial averaging (see 

also Martínez-Garcia et al. 2013, 2014).  

Different assumptions about how foragers process non-local information (e.g., detecting 

peaks versus averaging) entail losses of different information subsets.  This selectivity creates 

important opportunities for evolutionary tradeoffs linking perceptual ranges and mobility. For 

example, foragers that perceive and quickly move toward resource peaks could be misdirected 

towards small patches of high quality resources, when instead they would be better off moving 

toward larger patches of lower quality resources, particularly if there is a tendency to wander.  

Experimental studies of patch choice in which the same total amount of resources is distributed 

in different ways for animals with different perceptual ranges would facilitate exploration of 

these ideas.  

 Evolution likely acts in complex ways on the method by which animals attain the non-

local information necessary to inform their movement.  Our theoretical animals could obtain 

more non-local information about their resources either by increasing their detection scale, R, or 

by utilizing a more kurtotic detection function, 𝑔(𝑦, 𝑥, 𝑅). The first method increases the total 

amount of visual or auditory information that an animal would need to process, whereas the 
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second method introduces a measure of selectivity in perception, providing a limited amount of 

information about remote resources. In our modeling, large values of 𝑅𝑚𝑎𝑥 together with the 

more kurtotic Gaussian or Exponential detection functions yielded the greatest foraging success, 

especially in Gaussian landscapes (Fig. 4). However, these mechanisms need not covary in 

nature, as when an animal’s ability to discern important details at long distances reduces its 

perceptual field (Eriksen and James 1986). One prediction here is that increased detection scales 

should be favored in landscapes where it is actually possible to obtain long distance information 

regularly, but that kurtotic detection functions should be additionally favored when those 

landscapes are highly dynamic or spatially complex (Figs. E2, F1). 

Independent of information processing, and the inherent information loss that this entails, 

other disadvantages can also emerge from overreliance on non-local information. Most notably, a 

forager should only react to ephemeral resources if it can reliably reach and exploit them before 

they disappear.  If, instead, an animal is consistently ‘late to the party,’ then it not only fails to 

acquire distant resources, but also misses out on more attainable opportunities nearby.  This error 

becomes even more costly if movement is energetically expensive (Delgado et al. 2014), which 

is not the case in our current model. Perhaps this is the reason that we see evidence for distant 

resource discounting in many species (i.e., real resource detection functions may have shapes 

more like those in Eqs. 7-8 than in Eq. 6).  For example, human and nonhuman primates 

dramatically discount more remote resources relative to nearby resources (Janson, 2007; 

Mühlhoff et al. 2011; Stevens et al. 2005), and this devaluation occurs even when the costs of 

locomotion are negligent or non-existent (Howard & Fragaszy, 2014; Stone, 2008).  From these 

results, we predict such discounting to be less stringent in more dynamic landscapes. 

When and where is non-local information available in the real world ?  
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Our model of non-local information will be most useful for interpreting animal 

movement decisions in systems where non-local information is readily available.  One example 

is open grassland landscapes where information about resources in remote areas may be 

regularly obtainable through visual sensing. For example, Holdo et al. (2009) demonstrated the 

importance of non-local information gathering in their model of Serengeti wildebeest migration.  

In that system, the model predicted that migration would occur when wildebeest could track the 

availability of their resources at the ~100km scale, but there was no migration when the foragers 

based their movement decision on purely local information (Holdo et al. 2009).   

However, even when individuals cannot observe remote resources, non-local information 

gathering may still be possible.  In particular, sharing of public information may be a useful 

surrogate for distant cues (Danchin et al. 2004). Martínez-Garcia et al. (2013) developed a model 

of animal movement in which pairs of foragers communicate with each other over long 

distances.  Such long-distance communication, which may be achieved, for example, by 

individuals calling to one another, provides a mechanism for individuals to locate resource 

patches at distances far beyond their own local wandering. That model yielded a result that 

parallels predictions from our model: either an excess or a lack of communicated non-local 

information can worsen the spatial match between foragers and their resources (Martínez-Garcia 

et al. 2013).  This is consistent with our findings concerning the benefits of a mid-range resource 

detection scale (Fig. 3, 4, SD1).  

These ideas concerning a mid-range peak in detection ability lend themselves to 

exploration with empirical data.  For example, under the assumption that satellite-derived NDVI 

(normalized difference vegetation index) data reflects the availability of food resources for 

ungulates (e.g., Mueller et al. 2011), researchers could combine satellite data with GPS 
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movement tracking data to quantify resource availability within the vicinity of real animals 

moving through real landscapes.  Calculations would need to be implemented at the individual 

level using alternative candidate perceptual ranges, but one expectation would be that key 

metrics of animals’ mobility should correlate positively with the width of the perceptual ranges 

that provide the optimal overlap with available NDVI.  

Future Directions for Modeling 

Going forward, perceptual range models like the one presented here could be developed 

to explore a variety of new questions in the spatial ecology of foragers. One immediate extension 

would focus on what happens when foragers deplete their resources. Such losses are absent from 

some natural consumer-resource systems (Bewick et al. 2016), but are routinely assumed in 

models of consumer spatial ecology that invoke the ideal free distribution (Fretwell and Lucas 

1970, Lessells 1995).  Adding this important piece of realism would require a new metric of 

foraging success beyond that in Eq. 3.  

Additional challenging, but intriguing, future opportunities require modifying our 

movement model (Eq. 2) so that detection distances depend on the foragers’ location or rate of 

movement. These changes would substantially complicate both the model and our numerical 

analyses, but they would permit exploration of speed versus detection accuracy tradeoffs like 

those identified experimentally in coatimundis (Hirsch 2010) and capuchins (Janson and Di 

Bitetti 1997). Additional changes, such as spatially dependent alternatives to our resource 

detection functions (Eqs. 6-8), would provide insights on how local conditions influence 

detection of remote resources (e.g., Conover 2007). Related opportunities exist for modeling 

scenarios where movement itself depends on proximity to a detectable resource. For example, 

Prevedello et al. (2011) report that Brazilian marsupials move in a highly directed fashion when 
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they can perceive a forest patch but move randomly when the nearest patch is located beyond 

their perceptual range. We discuss additional future directions in Appendix C. 

Conclusion 

Classical foraging models typically assume that individuals are either omniscient or that 

they base movement decisions on purely local information. Real biological organisms fall 

between these extremes: individuals routinely benefit by integrating information from their 

surroundings before making movement decisions. However, there are strong limits on their 

perceptual ranges, both in terms of absolute distance and available detail.  

Our model extensively explores this middle ground, and suggests that foragers can 

profitably use non-local information to locate and exploit transient resource pulses in dynamic 

environments.  Non-local information is especially valuable in highly dynamic landscapes 

featuring sharp-edged resource patches and in ‘intense’ landscapes where resources are 

especially fleeting.  How organisms detect (or value) nearby versus remote resources determines 

how well they concentrate on their resources in space and time, and even modest amounts of 

information about remote resources can lead to profound improvements in foraging success 

compared to movement based only on local information (Fig. 5).  However, non-local 

information alone is not enough to improve foraging success.  Instead, the foragers must also be 

sufficiently mobile to react (advect) quickly to exploit transient resources. This link between 

perceptual range and dispersal traits echoes ideas emerging from evolutionary studies (Delgado 

et al. 2014) and makes clear that a deeper exploration of non-local information use in the context 

of dispersal will require additional ideas from both OFT and TED.  Moreover, our study reveals 

a strong dose of context-dependence as well, suggesting that highly dynamic and edgy 
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landscapes will foster the co-evolution of perceptual range and dispersal ability because both 

kinds of traits are essential to the acquisition of transient resources.  
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APPENDICES 

Appendix A: Non-local resource following functions and their derivatives 

Here we report and illustrate the exact forms of the non-local resource following function (ℎ(𝑥)) 

and their derivatives (𝑑ℎ 𝑑𝑥⁄ ) for each of six combinations of resource functions (Square and 

Gaussian; Eqs. 4-5) and detection functions (Top-hat, Gaussian, Exponential; Eqs. 6-8). 

As given in Eq. 1, the non-local resource function is a convolution of the detection over 

the resource, i.e.: 

ℎ(𝑥|𝜇, 𝜎, 𝑅) = ∫ 𝑔(𝑥′ − 𝑥, 𝑅)𝑚(𝑥′, 𝜇, 𝜎)𝑑𝑥′
∞

−∞

 

and the advection term is proportional to the gradient of this term 𝑑ℎ 𝑑𝑥⁄ . 
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Resource functions 

The two resource functions are: 

Gaussian:  

𝑚𝑔(𝑥|𝜇, 𝜎) ∼ 𝑁(𝜇, 𝜎
2) =

1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝜎2
) 

Uniform: 

𝑚𝑠(𝑥|𝜇, 𝜎) ∼ 𝑈𝑛𝑖𝑓(𝜇 − √3𝜎, 𝜇 + √3𝜎) =
1

2√3𝜎
(𝐻 (𝑥 − (𝜇 − √3𝜎)) − 𝐻 (𝑥 − (𝜇 + √3𝜎))) 

where  H(x) is the Heaviside step function. 

Detection functions 

The three detection functions scaled by radius are: 

Top-hat: 

𝑔𝑢(𝑥′, 𝑥, 𝑅) =
1

2√3𝑅
𝐻 (𝑥′ − (𝑥 − √3𝑅)) − 𝐻 (𝑥′ − (𝑥 + √3𝑅))  . 

Gaussian:  

𝑔𝑔(𝑥′, 𝑥, 𝑅) =
1

√2𝜋𝑅
𝑒𝑥𝑝(− (𝑥′ − 𝑥)2 (2𝑅2)⁄ ) 

Exponential: 

𝑔𝑒(𝑥′, 𝑥, 𝑅) =
1

2𝑅
𝑒𝑥𝑝(− |𝑥′ − 𝑥| 𝑅⁄ )  

Note, the standard deviation on the Square resource is structured so as to match the Gaussian 

resource, and the total probability density for each equals 1. 
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Solutions at R = 0 

It is useful to have a limiting basis (i.e. R→0) for these models towards which all of the 

subsequent R > 0 solutions should converge.  

Uniform Resource: 

At R = 0, the derivative of the Square resource consists of two Dirac delta functions: 

𝑑ℎ𝑢

𝑑𝑥
(𝑥, 𝜇, 𝜎) =

1

2√3𝜎
𝛿 (𝑥 − (𝜇 − √3𝜎)) − 𝛿 (𝑥 − (𝜇 + √3𝜎)) . 

See also Figure 1 in the main text. 

Gaussian Resource:  

For the Gaussian resource, the derivative of the resource function is: 

𝑑ℎ𝑔

𝑑𝑥
(𝑥, 𝜇, 𝜎) =

𝜇 − 𝑥

√2𝜋𝜎3
exp(

−(𝑥 − 𝜇)2

2𝜎2
) =

𝜇 − 𝑥

𝜎
𝜙(𝑥, 𝜇, 𝜎)   

where  ( ) is the standard Gaussian function. 

See also Figure 1 in the main text.  

Three Scenarios Involving the Uniform Resource 

Scenario 1: Top-hat detection – Uniform resource 

This scenario involves non-differentiable trapezoidal and step functions, depending on whether R 

is greater or less than √3𝜎 
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ℎ𝑢𝑠(𝑥, 𝜇, 𝜎, 𝑅) =
1

2(𝛽 − 𝛼)

{
 
 
 
 
 
 

 
 
 
 
 
 

0 (𝑥 < 𝜇 − 𝑠 − 𝑅) ∪ (𝑥 > 𝜇 + 𝑠 + 𝑅)
1

2𝑠
(𝑅 ≤ 𝑠) ∩ (𝜇 − 𝑠 + 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)

𝑥 + 𝑅 + 𝑠 −𝑚

4𝑠𝑅
(𝑅 ≤ 𝑠) ∩ (𝜇 − 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅)

−𝑥 + 𝑅 + 𝑠 +𝑚

4𝑠𝑅
(𝑅 ≤ 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)

1

2𝑅
(𝑅 > 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅)

𝑥 − 𝜇 + 𝑅 + 𝑠

4𝑠𝑅
(𝑅 > 𝑠) ∩ (𝜇 − 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅)

−𝑥 + 𝜇 + 𝑅 + 𝑠

4𝑠𝑅
(𝑅 > 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)

 

𝑑ℎ𝑢𝑠
𝑑𝑥

(𝑥, 𝜇, 𝜎, 𝑅) =
1

2(𝛽 − 𝛼)

{
 
 
 
 
 

 
 
 
 
 
0 ((𝑥 < 𝜇 − 𝑠 − 𝑅) ∪ (𝑥 > 𝜇 + 𝑠 + 𝑅)) ∩

((𝑅 ≤ 𝑠) ∩ (𝜇 − 𝑠 + 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)) ∩

((𝑅 > 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅))

1

4𝑠𝑅
(𝑅 ≤ 𝑠) ∩ (𝜇 − 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅)

−1

4𝑠𝑅
(𝑅 ≤ 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)

1

4𝑠𝑅
(𝑅 > 𝑠) ∩ (𝜇 − 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 − 𝑠 + 𝑅)

−1

4𝑠𝑅
(𝑅 > 𝑠) ∩ (𝜇 + 𝑠 − 𝑅 ≤ 𝑥 < 𝜇 + 𝑠 + 𝑅)

 

where for convenience of notation, α and β are the min and max of the resource distribution (𝛼 =

𝜇 − √3𝜎, 𝛽 = 𝜇 + √3𝜎) and 𝑠 = √3𝜎.  

Scenario 2: Gaussian detection – Uniform resource 

In this scenario 

ℎ𝑔𝑠(𝑥, 𝜇, 𝜎, 𝑅) =
1

4𝑠
(erf (

𝑥 + 𝑠 − 𝜇

√2𝑅
) − erf (

𝑥 − 𝑠 − 𝜇

√2𝑅
)) 

𝑑ℎ𝑔𝑠

𝑑𝑥
(𝑥, 𝜇, 𝜎, 𝑅) =

1

2𝑠
(𝜙 (

𝑥 − (𝜇 − 𝑠)

𝑅
) + 𝜙 (

𝑥 − (𝜇 + 𝑠)

𝑅
)) 
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where 𝑠 = √3𝜎 and 𝜙(𝑥) is the standard Gaussian distribution and erf() is the standard error 

function that arises from integrating the Normal distribution. 

Scenario 3: Exponential detection – Uniform resource 

In this scenario 

ℎ𝑒𝑠 =
1

2(𝛽 − 𝛼)
{

𝑒𝑥 𝑅⁄ (𝑒−𝛼 𝑅⁄ − 𝑒−𝛽 𝑅⁄ ) 𝑥 < 𝛼

2 − 𝑒(𝑥−𝛽) 𝑅⁄ − 𝑒(𝛼−𝑥) 𝑅⁄ 𝛼 ≤ 𝑥 ≤ 𝛽

𝑒−𝑥 𝑅⁄ (𝑒𝛽 𝑅⁄ − 𝑒𝛼 𝑅⁄ ) 𝑥 > 𝛽

 

𝑑ℎ𝑒𝑠
𝑑𝑥

=
1

2(𝛽 − 𝛼)𝑅
{

𝑒𝑥 𝑅⁄ (𝑒−𝛼 𝑅⁄ − 𝑒−𝛽 𝑅⁄ ) 𝑥 < 𝛼

𝑒(𝑥−𝛽) 𝑅⁄ + 𝑒(𝛼−𝑥) 𝑅⁄ 𝛼 ≤ 𝑥 ≤ 𝛽

𝑒−𝑥 𝑅⁄ (𝑒𝛽 𝑅⁄ + 𝑒𝛼 𝑅⁄ ) 𝑥 > 𝛽

 

where α and β are the min and max of the resource distribution as before.  
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Three Scenarios Involving the Gaussian resource 

Scenario 4: Top-hat detection – Gaussian resource 

This scenario uses a Top-hat detection function on a Gaussian resource function: 

ℎ𝑢𝑔(𝑥, 𝜇, 𝜎, 𝑅) =
1

4𝑅
(erf (

𝜇 + 𝑅 − 𝑥

√2𝜎
) − erf (

𝜇 − 𝑅 − 𝑥

√2𝜎
)) 

𝑑ℎ𝑢𝑔

𝑑𝑥
(𝑥, 𝜇, 𝜎, 𝑅) =

1

2𝑅
(𝜙 (

𝑥 + 𝑅 − 𝜇

𝜎
) − 𝜙 (

𝑥 + 𝑅 − 𝜇

𝜎
)) 

Scenario 5: Gaussian detection – Gaussian resource 

In this scenario  

ℎ𝑔𝑔(𝑥, 𝜇, 𝜎, 𝑅) =
1

√2𝜋(𝜎2 + 𝑅2)
exp (

−(𝑥 − 𝜇)2

2(𝜎2 + 𝑅2)
) 

𝑑ℎ𝑔𝑔

𝑑𝑥
(𝑥, 𝜇, 𝜎, 𝑅) =

𝑥 − 𝜇

√2𝜋(𝜎2 + 𝑅2)3 2⁄
exp(

−(𝑥 − 𝜇)2

2(𝜎2 + 𝑅2)
) 

Scenario 6: Exponential detection – Gaussian resource 

In this scenario 

ℎ𝑒𝑔(𝑥, 𝜇, 𝜎, 𝑅) =
1

4𝑟
(exp(

−𝑥 + 𝜇 + 𝜎2 2⁄ 𝑅

𝑅
)(erf (

𝑥 − (𝜇 + 𝜎2 𝑅⁄ )

√2𝜎
) + 1)

− exp(
𝑥 − 𝜇 + 𝜎2 2⁄ 𝑅

𝑅
)(erf (

𝑥 − (𝜇 − 𝜎2 𝑅⁄ )

√2𝜎
) − 1)) 
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𝑑ℎ𝑒𝑔

𝑑𝑥
(𝑥, 𝜇, 𝜎, 𝑅)  

=   
−1

4𝑅2
(exp (

−𝑥 + 𝜇 + 𝜎2 2⁄ 𝑅

𝑅
)(erf (

𝑥 − (𝜇 + 𝜎2 𝑅⁄ )

√2𝜎
) + 1)

+ exp(
𝑥 − 𝜇 + 𝜎2 2⁄ 𝑅

𝑅
)(erf (

𝑥 − (𝜇 − 𝜎2 𝑅⁄ )

√2𝜎
) − 1))  . 
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Appendix B:  Calculation of foraging success, Ω, for specific hypothetical infinite periodic 

resource landscapes with a Top-hat detection function. 

Case One – A periodic resource landscape with resource availability defined by a sine wave 

Consider the following resource distribution 

𝑚(𝑥) = sin (𝜔𝑥)       (B1) 

where  is proportional to the frequency of resource oscillation. The perception function for Eq. 

(B1) is given by 

ℎ(𝑥) =
1

2𝑅
∫ sin(𝜔𝑦)𝑑𝑦
𝑥+𝑅

𝑥−𝑅
=

sin(𝜔𝑅) sin(𝜔𝑥)

𝜔𝑅
    (B2) 

Likewise, from Eq. (3), the metric of foraging success is given by 

Ω = 𝑐2 ∫ sin (𝜔𝑥)𝑒
𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
2𝜋/𝜔

0
𝑑𝑥    (B3) 

For 𝛼 < 𝐷, it will always be true that 𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥) 𝐷𝜔𝑅⁄ < 1, thus equation (B3) can be 

approximated 

Ω ≈ 𝑐2 ∫ sin(𝜔𝑥) (1 +
𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
)

2𝜋/𝜔

0
𝑑𝑥 = 𝑐2

𝛼𝑠𝑖𝑛(𝜔𝑅)𝜋

𝐷𝜔2𝑅
   (B4) 

To define 𝑐2 we assume that average density of foragers across the landscape is 𝑢̅ = 1.  In this 

case,  

𝑐2 ∫ 𝑒
𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅 𝑑𝑥
2𝜋/𝜔

0
= 2𝜋/𝜔     (B5) 

Again, assuming  𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥) 𝐷𝜔𝑅⁄ < 1, we can rewrite Eq. (B5) as 

𝑐2 ∫ (1 +
𝛼𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
)

2𝜋/𝜔

0
𝑑𝑥 ≈ 2𝜋/𝜔       

𝑐2 ≈ 1      (B6) 
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Overall, then, the degree of overlap between the foraging population and the resource abundance 

distribution is given by Ω ≈ 𝛼𝑠𝑖𝑛(𝜔𝑅)𝜋 (𝐷𝜔2𝑅)⁄ . 

Taking the derivative of Ω we find 

𝑑Ω

𝑑𝑅
≈

𝛼𝜋

𝐷𝜔𝑅
(𝑐𝑜𝑠(𝜔𝑅) −

𝑠𝑖𝑛(𝜔𝑅)

𝜔𝑅
)    (B7) 

Thus the extrema are given by 

𝑡𝑎𝑛(𝜔𝑅) = 𝜔𝑅      (B8) 

From Eq. (B8) it is clear that the optimal value(s) of 𝑅 is independent of diffusion and advection, 

at least in the limit that advection is small and diffusion is large.  Examples of the metric of 

foraging success are plotted in Figure B1.  In this figure, the solid line is the exact steady-state 

distribution, Eq. (B3).  The black dots are the approximation to the exact steady state, Eq. (B4).  

The red dots are from a numerical solution of Eq. (2) over long periods and with a constant 

resource distribution.  The blue dots are from a numerical solution of Eq. (2), assuming that the 

resource distribution undergoes sinusoidal amplitude variation. 

 

Case Two - A periodic landscape where the distribution of resources is determined by two sine 

waves at different frequencies and a Top-hat detection function 

Consider the following resource distribution 

𝑚(𝑥) = 𝛾 sin(𝜔𝑥) + (1 − 𝛾) sin(𝛽−1𝜔𝑥)     (B9) 

with 𝛾< 1 and 𝛽 < 1.  The perception function for Eq. (B9) is given by 

ℎ(𝑥) =
1

2𝑅
∫ 𝛾 sin(𝜔𝑦) + (1 − 𝛾) sin(𝛽−1𝜔𝑦)𝑑𝑦

𝑥+𝑅

𝑥−𝑅

= 



36  

𝛾
𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝜔𝑅
+ (1 − 𝛾)

𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)𝑠𝑖𝑛(𝛽−1𝜔𝑥)

𝜔𝑅
   (B10) 

Likewise, from Eq. (3) in the main text, the metric of foraging success is given by 

Ω = 

𝑐2 ∫ (𝛾 sin(𝜔𝑥) + (1 − 𝛾) sin(𝛽−1𝜔𝑥))𝑒
𝛼𝛾𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅 𝑒
𝛼(1−𝛾)𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)𝑠𝑖𝑛(𝛽−1𝜔𝑥)

𝐷𝜔𝑅
2𝜋/𝜔

0
𝑑𝑥    (B11) 

For 𝛼 < 𝐷, it will always be true that 

 
𝛼𝛾𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
< 1 and  

𝛼(1−𝛾)𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)𝑠𝑖𝑛(𝛽−1𝜔𝑥)

𝐷𝜔𝑅
< 1,  

thus equation (B11) can be approximated 

Ω ≈ 𝑐2 ∫ (𝛾 sin(𝜔𝑥) + (1 − 𝛾) sin(𝛽−1𝜔𝑥)) (1 +
𝛼𝛾𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
+

2𝜋

𝜔
𝛽𝑗

0

𝛼(1−𝛾)𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)𝑠𝑖𝑛(𝛽−1𝜔𝑥)

𝐷𝜔𝑅
)𝑑𝑥 = 𝑐2 [

𝛼𝛽𝑗𝛾2𝜋𝑠𝑖𝑛(𝜔𝑅)

𝐷𝑅𝜔2
+
𝛼𝛽2𝑗(1−𝛾)2𝜋𝑠𝑖𝑛(𝛽−1𝜔𝑅)

𝐷𝑅𝜔2
]   (B12) 

where 𝑗 is the smallest integer picked such that 𝛽𝑗 = 𝑛 where 𝑛 is also an integer.  To define 𝑐2 

we assume that the average density of foragers across the landscape is 𝑢̅ = 1.  In which case,  

𝑐2 ∫ (1 +
𝛼𝛾𝑠𝑖𝑛(𝜔𝑅)𝑠𝑖𝑛(𝜔𝑥)

𝐷𝜔𝑅
+
𝛼(1−𝛾)𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)𝑠𝑖𝑛(𝛽−1𝜔𝑥)

𝐷𝜔𝑅
)𝑑𝑥

2𝜋

𝜔
𝛽𝑗

0
≈ 2𝜋𝛽𝑗/𝜔    

𝑐2 ≈ 1            (B13) 

Overall, then, the overall foraging success is given by  

Ω ≈
𝛼𝛽𝑗𝛾2𝜋𝑠𝑖𝑛(𝜔𝑅)

𝐷𝑅𝜔2
+
𝛼𝛽2𝑗(1−𝛾)2𝜋𝑠𝑖𝑛(𝛽−1𝜔𝑅)

𝐷𝑅𝜔2
. 

Taking the derivative of Ω we find 

𝑑Ω

𝑑𝑅
≈

𝛼𝜋𝛽𝑗

𝐷𝜔𝑅
[𝑐𝑜𝑠(𝜔𝑅) −

𝑠𝑖𝑛(𝜔𝑅)

𝜔𝑅
+ (

1−𝛾

𝛾
)
2

(𝑐𝑜𝑠(𝛽−1𝜔𝑅) −
𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)

𝜔𝑅
)]  (B14) 
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Thus the extrema are given by 

𝑡𝑎𝑛(𝜔𝑅) = 𝜔𝑅 +
𝜔𝑅𝑐𝑜𝑠(𝛽−1𝜔𝑅)−𝛽𝑠𝑖𝑛(𝛽−1𝜔𝑅)

𝑐𝑜𝑠(𝜔𝑅)
(
1−𝛾

𝛾
)
2

     (B15) 

Figure B2 shows examples of the metric of foraging success for the two sine wave scenario. 
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Figure B1  
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Figure B2  
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Appendix C. Additional Future Directions. 

Other kinds of biological realism, such as predation risk or spatial memory, could also be 

explored within the non-local information framework that we present. Memory-based movement 

(e.g., Fagan et al. 2013, Bracis et al. 2015), in which foragers can develop a temporal integration 

of the areas they have visited, may be particularly interesting because it provides a temporal 

counterpart to the spatial integration of non-local information (Eq. 1). For example, optimal 

foraging models suggest that spatial sampling of a neighborhood is of lower value in situations 

where the spatial distribution of resources is less predictable (e.g., Fortin 2002). Likewise, in 

empirical studies, overemphasis on previously visited areas is a key way in which non-

omniscient foragers deviate from ideal free distributions (e.g., Amano et al. 2006).  How spatial 

perception and memory conspire to determine foragers’ resource-matching abilities is very much 

an open question, but such matching should hinge on resource variability, perhaps in interesting 

ways. 

Another future direction would be to explore the impacts of non-local information in 

continuum models with evolutionary dynamics. Although evolutionarily optimal strategies for 

resource matching have been explored in detail for spatially varying but temporally constant 

environments, less is known about such strategies in systems with temporal variation. 

Nevertheless, results for the temporally constant case give hints for what factors might be 

relevant in cases with temporal variation.  In the temporally constant case, a population that 

advects on the gradient of the log of the resource density with exactly the right ratio of advection 

to diffusion can achieve an evolutionarily stable ideal free distribution based on purely local 

information (Cantrell et al. 2010, Averill et al. 2012).  However, if the population is constrained 

to advect on the gradient of the resource density (as opposed to its log) then it cannot achieve an 
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ideal free distribution. Despite this, strategies that are optimal and evolutionarily stable still arise 

from intermediate ratios of advection and diffusion (Lam and Lou 2014a,b). How such 

predictions would change in evolutionary models with temporal variation is an interesting and 

largely open question.  A completely unexplored topic is what would happen if advection on 

non-local information were included in TED models; classical results from OFT for patchy 

landscapes provide a comparative baseline (Charnov 1976, Pyke 1984).  
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Table 1.  Definitions, parameters, and biological interpretations. 

Symbol or Term Mathematical Definition Additional Biological Interpretation 

Movement based on 

Local Information 

Advection based on the 

infinitesimal gradient in the 

true resource distribution 

As a rule of thumb, operates on scales 

up to 5 or 10 times an organism’s body 

size. 

Movement based on 

Non-local 

Information 

Advection based on the 

spatially integrated gradient 

in the perceived resource 

distribution 

Operates on scales greatly exceeding an 

organism’s body size. 

D Diffusion rate Random movement 

α Advection rate Gradient-following movement 

Ω See Eq. 3 A metric of foraging success 

quantifying overall forager 

concentration on resources 

𝑢(𝑥, 𝑡) Distribution of foragers  

𝑚(𝑥, 𝑡) True distribution of resources  

𝑔(𝑦, 𝑥, 𝑅) Detection function Function characterizing an organism’s 

ability to extract information about its 

resources from its surroundings.  

R Detection scale. In the limit 

R→0, Eq. 2 collapses to the 

standard advection-diffusion 

equation. 

Standard deviation of the foragers’ 

detection function.  When R = 0 

movement is based on purely local 

information, whereas when R > 0 non-

local information about the resource 

influences movement. 

ℎ(𝑦, 𝑥, 𝑅) Non-local resource following 

function  
Perceived distribution of resources 
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FIGURE LEGENDS 

Figure 1.  For the case of static resource distributions, plots illustrate advection (resource 

following) functions (upper panels) and their corresponding stable state distributions (lower 

panels) for resources (m(x), shaded areas) that are Gaussian (panels a - d) or Uniform (panels e - 

h) distributions.  In all figures, the y-axis is scaled such that the resource distribution (shaded 

region) has area 1. The R=0 cases correspond to the standard gradient-following kinesis: note 

that the perceived resource gradient, h(x), corresponds exactly to the resource at R=0 (panels a 

and e), whereas when R>0, the perceived resource gradient spreads out spatially relative to the 

true resource. The vertical black lines in panel e occur because dh/dx for the Uniform resource 

consists of two Dirac delta functions.  See Appendix A for complete derivations of the non-local 

gradient functions. The lower row of panels illustrates the effect that a higher advection to 

diffusion ratio has on concentrating the equilibrium solution of the process, with a value of zero 

corresponding to a uniform distribution under reflecting boundary conditions at 0 and 100.  

 

Figure 2. Foraging success, Ω (Eq. 3), for an advection-diffusion equation (Eq. 2) under the 

special case R=0 where advection occurs on a purely local gradient (i.e., Ω0). Curves are plotted 

as functions of the advection coefficient α for each of four diffusion rates, D. Foraging success is 

greater in the Pulsed Gaussian resource landscape than in the Pulsed Uniform resource, but 

results do not depend on the detection function, g( ).  

 

Figure 3. Foraging success, Ω  (Eq. 3) as a function of R, the detection scale (i.e., standard 

deviation of the detection function), for different rates of advection, α, on a non-local resource 
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gradient as determined by Eq. 2. The plot uses a Top-hat detection function (Eq. 6) on a 

Gaussian pulsed resource (Eq. 5) with D = 1. The curve labels are located at the respective 

maxima, Ω𝑚𝑎𝑥.  Both  Ω𝑚𝑎𝑥 and the optimal detection scale, 𝑅𝑚𝑎𝑥, increase with α as faster 

following of the non-local gradient allows the foragers to better converge on the resources. Note 

that for sufficiently large α, perceptual scales that are either too large or too small relative to 

optimal (i.e., 𝑅 > 𝑅𝑚𝑎𝑥 𝑜𝑟 𝑅 < 𝑅𝑚𝑎𝑥 ) reduce Ω relative to Ω𝑚𝑎𝑥.  Moreover, the declines are 

asymmetrical, with overly large detection scales yielding poorer performance. 

 

Figure 4.  Contour plots for the optimal detection scale, 𝑅𝑚𝑎𝑥, and the corresponding maximal 

concentration of foragers on their resources, Ω𝑚𝑎𝑥, as functions of forager advection rate, α, and 

diffusion rate, D, for six different resource  detection function scenarios. The predominance of 

higher values of Ω𝑚𝑎𝑥 in the lower panels (denoted by paler grayscale shades) indicates that 

foragers concentrate more effectively on their resources in landscapes with Pulsed Gaussian 

patches (smooth gradients) than in landscapes with Pulsed Uniform patches (sharp edges). 

Similarly, by leveraging increased non-local information afforded by the more kurtotic Gaussian 

and Exponential detection functions, foragers concentrate more readily using those detection 

functions than with the Top-hat detection function, which provides substantially less information 

about remote resources.  This manifests as higher Rmax and Ωmax values in the center and right 

sets of panel than in the leftmost ones. 
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Figure 5.  Improved foraging success via non-local information gathering. Curves of the ratio 

Ωmax Ω0⁄  are plotted as functions of the advection coefficient α for each of four diffusion rates, D.  

This ratio quantifies the relative gain in foraging success that is possible with advection on non-local 

information relative to advection on infinitesimal local gradients. In all four panels a threshold effect 

is easily visible whereby there is no benefit of non-local information gathering unless the advection 

rate is sufficiently high to allow exploitation of that information. Moreover, advection on non-local 

information is more valuable in landscapes with sharp patch edges (comparing the upper panels with 

the lower ones).  However, this benefit depends on the detection function, with Gaussian detection 

(right panels) providing a greater benefit than Top-hat detection (left panels), provided diffusion is 

not too strong. Note that these dissipative effects are strongest when the advection rate is high. 

Figure B1. Overlap foraging success assuming various sinusoidal resource distributions and forager 

characteristics.  Each panel shows predictions for the exact steady state (black line, Eq. (B3)), the 

approximate steady state (black dots, Eq. (B4)), the numerical steady state with 𝑚(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜔𝑥) 

(red dots, Eq. (3) from the main text) and the time-averaged numerical solution with 𝑚(𝑥, 𝑡) =

𝑠𝑖𝑛(𝑡)𝑠𝑖𝑛(𝜔𝑥) (blue dots, Eq. (2) from the main text).  For the numerical simulations, we use 

Neumann boundary conditions.  In (a,b) 𝐷 = 1 and in (c,d) 𝐷 = 2.  In (a,c) 𝜔 = 0.25 and in (b,d) 

𝜔 = 0.5.  In all panels, 𝛼 = 1. 

Figure B2. Overall foraging success Ω assuming various sinusoidal resource distributions.  Each 

panel shows predictions for the exact steady state (black line, Eq. (B11)), the approximate steady 

state (black dots, Eq. (B12)), the numerical steady state with 𝑚(𝑥, 𝑡) = 𝛾𝑠𝑖𝑛(𝜔𝑥) +

(1 − 𝛾)𝑠𝑖𝑛(𝛽−1𝜔𝑥) (red dots, Eq. (3)) and the time-averaged numerical solution with 𝑚(𝑥, 𝑡) =

𝑠𝑖𝑛(𝑡)𝛾𝑠𝑖𝑛(𝜔𝑥) + (1 − 𝛾)𝑠𝑖𝑛(𝛽−1𝜔𝑥) (blue dots, Eq. (2)).  For the numerical simulations, we use 

Neumann boundary conditions.  In (a,b) 𝛾 = 0.5 and in (c,d) 𝛾 = 0.6.  In (a,c) 𝜔 = 0.25 and in (b,d) 

𝜔 = 0.5.  In all panels, 𝛼 = 1 and 𝐷 = 2. 
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